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Abstract: We demonstrate a successful deep learning strategy for cell identification and disease
diagnosis using spatio-temporal cell information recorded by a digital holographic microscopy
system. Shearing digital holographic microscopy is employed using a low-cost, compact, field-
portable and 3D-printed microscopy system to record video-rate data of live biological cells with
nanometer sensitivity in terms of axial membrane fluctuations, then features are extracted from
the reconstructed phase profiles of segmented cells at each time instance for classification. The
time-varying data of each extracted feature is input into a recurrent bi-directional long short-term
memory (Bi-LSTM) network which learns to classify cells based on their time-varying behavior.
Our approach is presented for cell identification between the morphologically similar cases of
cow and horse red blood cells. Furthermore, the proposed deep learning strategy is demonstrated
as having improved performance over conventional machine learning approaches on a clinically
relevant dataset of human red blood cells from healthy individuals and those with sickle cell
disease. The results are presented at both the cell and patient levels. To the best of our knowledge,
this is the first report of deep learning for spatio-temporal-based cell identification and disease
detection using a digital holographic microscopy system.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Digital holographic microscopy is an optical imaging technology that is capable of both
quantitative amplitude and phase imaging [1]. Many studies have shown digital holographic
microscopy as a powerful imaging modality for biological cell imaging, inspection, and analysis
[2–18]. Furthermore, digital holographic microscopy has been used successfully in cell and
disease identification [16] for various diseases including malaria [2], diabetes [4], and sickle cell
disease [6,19]. Digital holographic microscopy has additionally been used for discrimination
between various inherited red blood anemias by considering Zernike coefficients [20]. Other
forms of quantitative phase imaging, such as optical diffraction tomography can similarly be used
for analysis of biological cells [21,22]. However, the single-shot capabilities of digital holographic
microscopy, make it an ideal choice for analysis of spatio-temporal dynamics in live biological
cells [6,14,23–25]. In particular, in [6] a compact and field-portable digital holographic system
was presented for potential diagnostic application in sickle cell disease using spatio-temporal
information. In this current work, we advance those capabilities by combining the use of dynamic
cellular behavior with deep learning strategies to provide better cell identification capabilities
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and diagnostic performance in a low-cost and compact, digital holographic microscopy system.
While the presented work uses a shearing-based compact digital holographic microscope, the
proposed deep-learning method can be applied for cell identification tasks using any system that
offers video-rate holographic imaging capabilities. This includes but is not limited to other forms
of off-axis digital holography such as those using the Michelson arrangement [26,27], various
forms of wavefront-division systems [28,29], and in-line holographic systems [30].

Deep learning refers to the multi-level representation learning methods where the complexity of
the representation increases as the number of layers grow [31]. These methods have been found to
be extremely useful for finding intricate structures from high level data and routinely outperform
conventional machine learning algorithms, all without the need for carefully engineering feature
extractors. For image processing tasks specifically, convolutional neural networks (CNNs) are
paramount among deep learning strategies. CNNs notably make use of convolutional layers
where each unit of a convolutional layer connects to local patches of the previous layer. This
allows for combinations of local features to build upon each other in generation of more global
features and makes CNNs well-suited for easily identifying local patterns at various positions
across an image. Developments in hardware and software since the inception of CNNs have
resulted in CNNs becoming the dominant approach for nearly all recognition and detection tasks
today [31].

Following the expansion in use of convolutional neural networks [31] formany image processing
tasks, deep learning has similarly grown increasingly popular for cell imaging tasks in recent
years [32,33]. These tasks include, but are not limited to, cell classification, cell tracking [32], and
segmentation of living cells [34]. Moreover, deep learning has been used in holographic imaging
specifically for reconstruction, super-resolution imaging, and pseudo-colored phase staining
to mimic conventional brightfield histology slides [35]. Additionally, the use of convolutional
neural networks in quantitative phase imaging has been presented for screening of biological
samples, such as for the detection of anthrax spores [36], classification of cancer cell stages [37],
and classification between white T-cells and colon cancer cells [38]. While much of this research
for deep learning in holographic cell imaging thus far has primarily dealt with stationary phase
images, recurrent neural networks such as long-short term memory (LSTM) networks [39], also
make deep learning an attractive option for dealing with time-varying biological data [40].

In this paper, we present a deep learning approach for cell identification and disease diagnosis
using dynamic cellular information acquired in digital holographic microscopy. Handcrafted
morphological features, and transfer learned [32,41] features from a pretrained CNN are extracted
from every reconstructed frame of a recorded digital holographic video, then these features are
input into a Bi-LSTM network which learns the temporal behavior of the data. The proposed
method is demonstrated for cell identification between cow and horse red blood cells, as well as
for classification between healthy and sickle cell diseased human red blood cells. The proposed
deep learning approach provides a significant improvement in terms of classification accuracy
in comparison to our previously presented approach utilizing conventional machine learning
methods [6,19]. To the best of our knowledge, this is the first report of deep learning using
spatio-temporal cell dynamics for cell identification and disease diagnosis in digital holographic
microscopy video data.

The rest of the paper is organized as follows: the optical imaging system used for data collection
is described in Section 2 followed by the details of the feature extraction and the long short-term
memory network. Results for the two datasets are given in Section 3 followed by discussions in
Section 4 and finally, the conclusions are presented in Section 5.
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2. Materials and methods

2.1. Compact and field-portable digital holographic microscope

All data was collected using a previously described compact and field-portable 3D-printed
shearing digital holographic microscope [6]. Shearing-based interferometers are off-axis
common-path arrangements that provide a simple setup and highly stable arrangement for digital
holographic microscopy [3,17]. The 3D-printed microscope consists of a laser diode (λ= 633
nm), a translation stage to axially position the sample, one 40X (0.65 NA) microscope objective,
a glass plate, and a CMOS image sensor (Thorlabs DCC1545M).
The beam emitted from the laser diode passes through the cell sample, is magnified by the

microscope objective lens, then falls upon the glass plate at an incidence angle of 45-degrees.
The light incident on the glass plate is reflected from both the front and back surfaces of the
plate to generate two laterally sheared copies of the beam. These beams will self-interfere and
form an interference pattern that is recorded by the image sensor. The fringe frequency of the
recorded pattern is determined by the radius, r, of curvature of the wavefront, as well as the
vacuum wavelength of the source beam, λ, and the lateral shear induced by the glass plate, S,
where S = tg sin(2β)/

√
n2 − sin2(β). In this equation, tg is the glass plate thickness, β is the

incidence angle upon the glass plate, and n is the refractive index of the glass plate [42,43]. Due
to a shearing configuration, there will exist two copies of each cell, however, when the lateral
shear is greater than the size of the magnified object, the cells will not overlap with their copies,
and the normal processing of off-axis holograms is followed [3]. Furthermore, the capture of
redundant sample information can be avoided by ensuring the lateral shear is greater than the
sensor size [12]. This shearing digital holographic microscopy system provides a field-of-view
of approximately 165 µm x135 µm, and the theoretical resolution limit was calculated as 0.6 µm
by the Rayleigh criterion [6,19]. Furthermore, the temporal stability of the system was reported
as 0.76 nm [6], when measured in the hospital setting that served as the site of the human red
blood cell data collection, making the system well suited to study red blood cell membrane
fluctuations which are on the order of tens of nanometers [6,44]. A diagram of the optical system
and depiction of the 3D-printed shearing digital holographic microscope are provided in Fig. 1.

Fig. 1. (a) Optical schematic of lateral shearing digital holographic microscope. (b)
3D-printed microscope used for data collection.
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Using the described system, thin blood smears are examined, and video holographic data is
recorded. Following data acquisition, each individual frame of a segmented red blood cell is
numerically reconstructed. Based on the thin blood smear preparation, the red blood cells are
locally stationary, but continue to exhibit cell membrane fluctuations. Given the high sensitivity
of the system to axial changes, the system can detect small changes in the cell membrane (i.e.
cell membrane fluctuations). These slight changes in the overall cell morphology are studied
over the duration of the videos to provide information related to the spatio-temporal cellular
dynamics of the sample. Further details related to the suitability of DHM in studying red blood
cell membrane fluctuations are provided in Refs. [6] and [14].

2.2. Human subjects, blood collection and preparation

This study was approved by the Institutional Review Boards of the University of Connecticut
Health and University of Connecticut-Storrs. All subjects were at least 18 years old and were
ineligible to participate if they had a blood transfusion within the previous three months. Blood
was collected once from both healthy control subjects and subjects with sickle cell disease (SCD).
7 ccs of blood was collected via venipuncture into two 3.5 mL lavender top vacutainer tubes for
complete blood count with leukocyte differential, hemoglobin electrophoresis, and blood smears.
Demographic information including age, race, and ethnicity was recorded.

2.3. Digital holographic reconstruction

Following the recording of a holographic video by the CMOS sensor, the video frames are
computationally processed to extract the phase profiles of the objects under inspection. Based
on the off-axis nature of the shearing interferometer, we use the common Fourier spectrum
analysis [3,45,46] in processing of the holograms. From the recovered complex amplitude of the
sample, ũ (ξ, η), the object phase calculated as F=tan−1[Im{ũ}/Re{ũ}], where Im{·} and Re{·}
represent the real and imaginary functions, respectively. The extracted phase is then unwrapped
by Goldstein’s branch-cut method [47]. System abberations are reduced by subtracting the phase
of a cell-free region of the blood smear [3,48]. Given the unwrapped object phase (Fun), the
optical path length (OPL) is computed as OPL= Fun[λ/(2π)]. When the refractive indices of
both the object and background media are known, the OPL can be directly related to the height
or thickness of the object through the expression h=OPL/∆n, where h is the height and ∆n is the
refractive index difference. Typical values for human red blood cells and plasma are 1.42 and
1.34, respectively [49], however, these values cannot be assumed for all samples in the follwing
analysis, thus all analysis in this paper is performed using the OPL values.

2.4. Hand-crafted morphological feature extraction

To characterize the cells under inspection, morphological features related to the cell shape are
calculated for each segmented cell. The use of morphological features is a long-standing method
for qualitative and quantitative assessment of biological specimen [50]. The morphological
features extracted here provide easily interpretable cell characteristics that are related to the three-
dimensional cell shape and composition. In total, we use fourteen handcrafted morphological
features. Eleven of these features relate to the instantaneous characteristics of the cell (i.e. static
features) whereas three of these features are designed to capture the time-varying or motility-based
features and encode the spatio-temporal behavior of the cells [6]. The static features are used
in both the conventional machine learning algorithm and the proposed deep learning method.
However, because the proposed deep learning method learns the spatio-temporal behavior from
the static features at each time step, the three motility features mentioned in this section are used
only in the conventional machine learning algorithm for comparison to the proposed method.
Details regarding extraction of spatio-temporal features for use in conventional machine learning
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algorithms are provided in [6]. Table 1 provides a brief description for all hand-crafted features
examined in this work [5,6,12,14].

Table 1. Handcrafted feature extraction

Extracted Feature Name Description of Feature

Mean optical path length Average measured optical thickness of the sample

Coefficient of variation Variance of the optical thickness

Projected cell area Total projected area of the cell

Optical volume Total projected volume of the cell

Cell thickness skewness Third central moment of the cell optical thickness

Cell thickness kurtosis Fourth central moment of the cell optical thickness

Cell perimeter Length along the outer boundary of the cell

Cell circularity Measure of how circular the cell is

Cell elongation Measure of how elongated the cell is

Cell eccentricity Measure of irregularity in cell shape

Cell thickness entropy Measure of randomness over the cell thickness
aOptical flow Measure of cell lateral motility
aStandard deviation of the 2D mean OPL map Measure of the differences in average OPL over the cell
aStandard deviation of the 2D STD OPL map Measure of differences in cell fluctuations over the cell

aSpatio-temporal features are used only in the conventional machine learning approach for comparison. The proposed
deep learning method extracts its own representation of spatio-temporal information.

2.5. Feature extraction through transfer learning

Alternatively, instead of carefully designing handcrafted features, convolutional neural networks
can be used to find effective feature representations for a given dataset. Recently, thanks in
part to openly available databases for training such as ImageNet [51], the use of pretrained
networks in transfer-learned image classification tasks has grown significantly. Transfer learning
enables the use of powerful deep learning models to be used on smaller, ‘target’ datasets by first
pre-training the network on a larger ‘source’ dataset [32]. When using a pretrained network, a
complex convolutional neural network is trained on an extremely large database to learn features
that generalize well to new tasks. Then the pretrained network is adapted for a new dataset.
This sometimes involves retraining several terminal layers of a network using the target dataset,
however, the simplest form of transfer learning is to use a pretrained network as a feature extractor
for new tasks. To apply these pretrained networks as a feature extractor, after training on a source
dataset, the target training set is passed through the CNN up to the last fully connected layer,
then the feature vector from this last layer is used to train a new classifier such as a support
vector machine [39]. In doing so, transfer learning removes the need for long training process on
new datasets, requires the data to only pass through the network once for feature extraction, and
greatly reduces both the time and computational resources needed to leverage the benefits of
deep learning models.
In this work, we use the DenseNet-201 convolutional neural network [52], pretrained on

ImageNet, as a feature extractor for classification tasks. The DenseNet is a specific type of CNN
architecture wherein the input to any given layer includes the feature maps from all preceding
layers rather than only the most recent layer as in more traditional architectures. This arrangement
was shown to be beneficial in reducing issues due to vanishing gradients, reducing the number
of parameters, and strengthening feature propagation [52]. Following feature extraction using
the pretrained network, 1000 features are output by the network. These features have no easily
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interpretable meaning but do offer robust features for most image classification tasks. As with
the static handcrafted morphology-based features, the transfer learned features were extracted at
each frame of the reconstructed video data providing a time-varying signal of the feature values
for input to our deep learning model.

2.6. Long short-term memory (LSTM) network

To make classifications on sequential data, a special form of neural network is required. Recurrent
neural networks (RNNs) are the specific type of artificial neural network designed to handle
sequences of data and map the dynamic temporal behavior. RNNs use a looped architecture to
allow some information to be maintained from the previous time step. They work by processing
sequential data one element at a time and maintaining a ‘state vector’ for hidden units to
incorporate the information from past input elements [31]. Theoretically, these networks should
be able to handle arbitrarily long signals. In reality, however, RNNs are sensitive to exploding
and vanishing gradients as the sequences get longer. To help alleviate the gradient-related issues,
the long short-term memory network (LSTM) [39] was introduced and has since become one of
the most used network architectures for sequential deep learning tasks. The LSTM architecture
uses a cell state and cell gate arrangement to handle longer sequences of data and to mitigate the
vanishing gradient problem [39]. Through several interacting gates that control the cell state as
it is passed from the previous LSTM block to the following LSTM block, the LSTM network
controls how memory is maintained through the system. A forget gate determines how much of
the previous information regarding the cell state is to be discarded, an input gate determines how
much information of the current cell state needs to be updated, and an output gate determines
what information of the current cell is output to the following block.

To use an LSTM network, features are extracted at each time instance of a time-varying
signal and input into the LSTM network as a matrix wherein each column is a feature vector
corresponding to a different time step and each row is a different feature. During the training
process, the LSTM network learns the mapping for the time-varying behavior of the data to
accomplish the given task. A popular variant of the original LSTM architecture is the bi-
directional LSTM (Bi-LSTM) architecture [53] which simultaneously learns in both the forward
and reverse directions and is used in this work. An explanatory diagram for the Bi-LSTM network
is provided by Fig. 2.

From Fig. 2, we see that feature vectors for each time-step are input to the network as xt. Each
LSTM block, uses the input feature vector (xt), and the previous cell’s hidden state (ht−1) to
update the cell state from Ct−1 to Ct, as well as outputting a new hidden state (ht) to be fed to the
following LSTM block. The outputs from the Bi-LSTM layer are passed to a fully connected
layer, followed by a softmax then classification layer. Inside, each LSTM block, as shown by
Fig. 2(b) several operations take place which give the LSTM architecture its unique functionality
in comparison to traditional RNNs.
For operation of the Bi-LSTM network, the cell state (Ct), is passed through the repeating

blocks of the Bi-LSTM layer and updated by several interacting gates, where each gate is
composed of a sigmoid function to determine how much information should be passed along and
a multiplication operation. From left to right in the diagram shown in Fig. 2(b), the first of these
sigmoidal functions is the activation function for the forget gate (ft) which uses the previous
hidden state (ht−1) and the current input (xt) to determine how much of the previous cell state
(Ct−1) is discarded. The second sigmoid function is the activation function of the input gate
(it), which determines the values of the cell state to be updated. The input gate is multiplied
with a vector of potential new values to be added to the previous cell state, (C̃t), produced by
a hyperbolic tangent function, then combined with the previous cell state to obtain the current
cell state (Ct). The third sigmoid is the activation function for the output gate (Ot) to determine
which part of the cell state to output as the updated hidden state. The current cell state (Ct) is
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Fig. 2. Explanatory diagram of the Bi-LSTM network architecture. (a) Shows the general
overview of the network structure starting from the input feature vectors at each time step, xt,
which are fed through the Bi-LSTM layer enclosed by the dashed box. The output of the
Bi-LSTM layer feeds to a fully connected layer followed by a softmax then classification
layer. (b) Shows a close-up look at an individual LSTM block of the network. Internal
operation of the LSTM block is discussed in the paragraph below.

passed through a hyperbolic tangent function then multiplied with the output gate (Ot) to produce
the updated hidden state (ht). These defining interactions can be described mathematically as
follows [39]:

ft = σ(Wxf xt +Whf ht−1 + bf ) (1)

it = σ(Wxixt +Whiht−1 + bi) (2)

C̃t = tanh(WxCxt +WhCht−1 + bC) (3)

Ct = ftCt−1 + itC̃t (4)

Ot = σ(WxOxt +WhOht−1 + bO) (5)

ht = Ot tanh(Ct). (6)

Where i, f, and O are the input, forget and output gates, respectively, C is the cell state vector,
and Wkk and bkk, k ε {i, f ,O, c, x, h}, are the weights and biases of the network. σ and tanh
represent the sigmoidal and hyperbolic tangent functions, respectively. Since a Bi-LSTM layer is
used, the output of the Bi-LSTM layer to the fully connected layer is the concatenation of the
final outputs from the both the forward and reverse directions.

For the Bi-LSTM network used in this work, both the handcrafted morphological features, and
the transfer learned features which have been extracted for every time frame are used as inputs.
Note that for the handcrafted features, we are unable to extract the three handcrafted motility
features at each individual frame. Instead, we use the statistical means of the optical flow vector
magnitudes and orientations as additional static features to incorporate the information obtained
from the optical flow algorithm.
During processing, all videos were limited to the first two hundred frames to reduce the

computational requirements. The Bi-LSTM network used a dropout rate of 0.4 following the
Bi-LSTM layer and was optimized using the Adam optimizer. For the animal RBC task, the
Bi-LSTM layer contained 400 hidden units and was trained for 60 epochs with a learn rate of
0.001 for the first 30 epochs and 0.0001 for the final 30 epochs. These hyperparameters were
chosen based on the performance of a single randomly chosen video as the test set. For the
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human RBC task, the Bi-LSTM layer contained 650 hidden units and was trained for 40 epochs
with an initial learn rate of 0.0001 that dropped to 0.00001 for the final 10 epochs. Similarly,
these hyperparameters were chosen based on the performance for a single randomly chosen
patient as the test set. All processing, classification, and analysis was performed using MATLAB
software. During feature extraction, approximately 100 cells were processed per minute for video
sequences of 200 frames. After feature extraction, including training time, classification of a
single patient’s RBCs took less than 1 minute using a NVIDIA Quadro P4000 GPU.

2.7. Performance assessment

To demonstrate the performance of our proposed method, we study two distinct red blood cell
(RBC) datasets. First, we consider classification between cow and horse RBCs. Second, we
consider a previously studied dataset of healthy and sickle cell disease RBCs from human
volunteers [6]. In each case, the datasets are classified using a conventional machine learning
strategy as well as the proposed deep learning method for comparison. The conventional machine
learning algorithm uses the handcrafted features of Section 2.4 in a random forest classifier [54],
then these results are compared to our proposed method using an LSTM deep learning model.
To further illustrate the benefit of using time-varying signals as inputs for classification, we also
consider a support vector machine classifier using the same features as the proposed LSTM
model but extracted from only the first time frame.
The classification performance is assessed based on classification accuracy, area under the

receiver operating characteristic curve (AUC), and Mathew’s correlation coefficient (MCC). The
area under the curve provides the probability for a classifier that a randomly chosen positive class
data point is ranked higher than a randomly chosen negative class data point. For this metric,
1 represents perfect classification of all data points, 0 represents incorrect classification of all
points and 0.5 represents a random guess. Mathew’s correlation coefficient is a machine learning

Fig. 3. Flow chart depicting an overview of the deep learning-based cell and disease
identification system. Video holograms of biological samples are recorded using the system
depicted in Fig. 1. Following data acquisition, each time frame is reconstructed, and
individual cells are segmented. Features are extracted from the segmented cells and input
into a Long Short-Term Memory network for classification. xt and ht denote the input and
output through a portion of an LSTM network at time-step t.
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performance metric that effectively returns the correlation coefficient between the observed and
predicted classes in a binary classification task. Values of MCC range from -1 (total disagreement)
to 1 (perfect classification) with 0 representing a random guess. The MCC is considered to be a
balanced measure and provides a reliable metric of performance even when dealing with classes
of varied sizes.
The full process for cell identification and disease diagnosis is overviewed by Fig. 3. Each

red blood cell dataset is considered under two conditions: pooled data, and cross-validated data.
For the pooled data, all cells are grouped together and randomly partitioned with an 80%/20%
split for training and testing. Cross-validation, on the other hand, provides a more accurate
representation of real-world applications by testing the cells in a manner similar to that which
they were collected. For the human red blood cell dataset, cross-validation is performed at the
patient level. That is, we test one patient at a time, ensuring no cells from the current test patient
are present in the training data. The testing is repeated for each patient’s data while the remaining
patients comprise the training set, and the results are averaged. For the animal red blood cell
dataset, cross-validation is performed at the video level. By this we mean all cells extracted from
a given video were grouped together, and only the cells from a single video were used as the
current test set. This ensures that no data from the current testing video data is present in the
training set. As with the human RBC dataset, the results are averaged over all individual videos
acting as the test set.

3. Experimental results

3.1. Cell identification: classification of cow and horse red blood cells

The dataset for cow and horse red blood cells consisted of 707 total segmented RBCs (376 Cow,
331 Horse). The two animal cell types were chosen based on morphological similarity as both
animal RBC types are biconcave disk-shaped and between 5-6 µm in diameter [55]. The animal
red blood cells were obtained as a 10% RBC suspension taken from multiple specimens and
suspended in phosphate-buffered saline (as provided by the vendor). Thin blood smears of the
blood samples were prepared on microscope slides and covered by a coverslip, then imaged using
the digital holographic microscopy as shown in Fig. 1. No additional buffer medium was used,
and all cells were imaged prior to the slide drying out due to exposure to air. Video holograms
were recorded at 20 frames per second for 10 seconds. Following hologram acquisition, the
cells were segmented, reconstructed, then features were extracted as described in the above
paragraphs. Segmentation was performed using a semi-automated algorithm wherein potential
cells were identified through simple thresholding and an input expected size. Once potential cells
are identified, morphological operators included in the Matlab image processing toolbox were
used to automatically isolate the segmented cell from its background medium at each time frame.

Fig. 4. Segmented digital holographic reconstructions of (a) cow, and (b) horse red blood
cells, with noted similarity in both size and shape. Video reconstructions for each cell are
available online.
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Human supervision during the segmentation process allows for quality control to remove any
data from the dataset when multiple cells overlap, or segmentation was not performed properly.
Examples of segmented cow and horse RBCs are provided by Fig. 4. Notably both cell types have
similar size and shape, presenting a non-trivial classification problem. Video reconstructions
of the segmented cells are available online. Furthermore, we provide the probability density
functions for each of the hand-crafted features in Fig. 5, which show significant overlap between
the two classes, indicating their similarity.

Fig. 5. Probability density functions of each hand-crafted feature for cow (blue curve) and
horse (red curve) red blood cells. Mean optical path length is reported in meters, projected
area in meters squared, optical volume in cubic meters, and all other features in arbitrary
units.

The resulting confusion matrices for the cross-validated data are provided in Table 2, and the
receiver operating characteristic curves comparing the random forest and LSTM models for the
cross-validated data are shown in Fig. 6.

FromTable 2, we note a slight increase in classification accuracywhen using the proposedLSTM
classification strategy over the previously reported random forest model for cell identification
using spatio-temporal cell dynamics [6,19]. Furthermore, both the random forest and LSTM
models outperform the SVM model which uses features extracted from only a single time frame,
highlighting the benefits of considering the dynamic cellular behavior. Figure 6 shows the ROC
curves for both the random forest and LSTM models on the cross-validated data using different
extracted features for classification.

The random forest model was tested under three conditions: (1) using only static-based features,
(2) using only the motility-based features and (3) when the combination of all features was
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Fig. 6. Receiving operating characteristic (ROC) curves for classification between cow and
horse red blood cells.

Table 2. Confusion matrices for cross-validation classification of cow and horse RBCs

Random Forest Model
Combined Features in an

LSTM network
Combined Features from a

single frame in SVM
Predicted
Cow

Predicted
Horse

Predicted
Cow

Predicted
Horse

Predicted
Cow

Predicted
Horse

Actual Cow 299 77 293 83 212 164

Actual Horse 94 237 71 260 115 216
Classification
Accuracy 75.81% 78.22% 60.54%

used. The LSTM model was also tested for three conditions: (1) using only the handcrafted
morphological features, (2) using only the transfer learned features, and (3) using the combination
of all features. Amongst the random forest classifiers, the highest area under the curve
(AUC= 0.8511) was achieved when the combination of both static and motility-based features
was used. Overall, the LSTM model using combined features provided the best overall
performance, having an AUC of 0.8615. A summary of the classification performance for all
tested conditions, including both the pooled and cross-validated results are given in Table 3.

Table 3. Summary of classification results for cow and horse RBCs

Dataset Method Accuracy AUC MCC

Pooled Data

Random Forest – static features only 77.46% 0.8650 0.5432

Random Forest – motility features only 84.51% 0.8981 0.6814

Random Forest – combined features 83.80% 0.9285 0.6674

LSTM – morphological features only 79.58% 0.8896 0.5965

LSTM – transfer learned features only 83.10% 0.8040 0.6600

LSTM – combined features 84.51% 0.8388 0.7067

Cross Validated Data

Random Forest – static features only 73.41% 0.7978 0.4652

Random Forest –motility features only 77.09% 0.8405 0.5391

Random Forest – combined features 75.81% 0.8511 0.5134

LSTM – morphological features only 77.65% 0.8314 0.5580

LSTM – transfer learned features only 68.46% 0.7403 0.3696

LSTM – combined features 78.22% 0.8615 0.5639
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For the pooled data, the proposed LSTM model achieves the highest classification accuracy
and MCC values, whereas for the cross-validated data, the proposed LSTM model achieves the
highest values of classification accuracy, AUC, and MCC values.

3.2. Detection of sickle cell disease (SCD)

For validation on a clinically relevant dataset, we test our proposed method on a previously
studied dataset of healthy and sickle cell disease human RBCs [6,19]. Sickle cell disease is
recognized as a global health issue by both the World Health Organization (WHO) and the United
Nations. The inherited blood disease is characterized by the presence of abnormal hemoglobin
which cause mishappen red blood cells and affects oxygen transport throughout the body. The
disease is particularly devasting in less developed regions of the world, such as some regions
of Africa, where approximately 1,000 children with SCD are born every day and over half will
die before their fifth birthday [56]. The only cure for SCD is a bone marrow transplant which
carries significant risks and is rarely used for cases of SCD [57]. Most often, treatments include
medications and blood transfusions [57]. Early and accurate detection of sickle cell disease
is important for establishing a treatment plan and reducing preventable deaths. Cells with the
abnormal sickle hemoglobin often form irregular rod-shaped and sickle shaped cells which give
the disease its name. However, not all RBCs from a SCD patient will be sickle shaped. Despite
some cells having normal appearance under visual inspection, all RBCs produced by a person
with sickle cell disease will have abnormal intracellular hemoglobin which may contribute to
abnormal cell behavior.
Standard procedures for identification of sickle cell disease use gel electrophoresis or high-

performance liquid chromatography to analyze a blood sample and screen it for the presence
of abnormal hemoglobin. The major downside of these strategies is that they require dedicated
laboratory facilities, the processing takes several hours, and due to cost-saving measures, the
patient may not receive the results for up to two weeks after the initial blood draw [6]. These
drawbacks severely limit the testing abilities in areas of the world where the disease is most
prevalent. To address these limitations, rapid point of care systems are currently being developed
and tested [58,59]. Furthermore, optical methods such as multi-photon microscopy [60], and
digital holographic microscopy [6,13,19], have also been used to study sickle cell disease and as
potential diagnostic alternatives.
For generation of this dataset, 151 cells from six healthy (i.e. having no hemoglobinopathy

traits) volunteers (4 female, 2 male) and 152 cells from eight patients with sickle cell disease (2
female, 6 male) were segmented from blood samples. After whole blood was drawn from the
volunteers, a thin blood smear was prepared on a standard microscope slide with a coverslip for
analysis in the digital holographic microscopy system (Fig. 1). All data was collected before
the samples dried out from exposure to air. Video holograms were recorded for 20 seconds

Fig. 7. Segmented digital holographic reconstructions of (a) healthy red blood cell, and (b)
sickle cell disease red blood cell. Note, sickle cell disease red blood cells can have various
degrees of deformity and may present morphologically similar to healthy RBCs. Video
reconstructions for each cell available online.
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at 30 frames per second. Following data acquisition, the individual cells were segmented
and numerically reconstructed to allow for feature extraction and classification. Due to the
presence of abnormally shaped cells, all reconstructed RBCs in this dataset were manually
segmented. Visualizations of both healthy and SCD RBCs are shown in Fig. 7. Furthermore,
video reconstructions of these cells are available online. Again, we provide the probability
density finctions for each of the hand-crafted features to illustrate the non-trivial classification
problem in Fig. 8.

Fig. 8. Probability density functions of each feature for healthy (blue curve) and sickle cell
disease (red curve) red blood cells. Mean optical path length is reported in meters, projected
area in meters squared, optical volume in cubic meters, and all other features in arbitrary
units.

The resulting confusion matrices for the cross-validated data are provided in Table 4, and the
receiver operating characteristic curves comparing the random forest and LSTM models for the
cross-validated data are shown in Fig. 9. The confusion matrices in Table 4 show we achieved
the best performance using the proposed LSTM model for cross-validated classification of the
human RBC dataset (81.52% accuracy). The proposed method outperformed the previously
presented random forest model (72.93% accuracy) and outperforms an SVM classifier using
features extracted from only a single time frame (76.23% accuracy). Likewise, Fig. 9 shows
the ROC curves for both the random forest and LSTM models on the cross-validated data using
different extracted features for classification.
From Fig. 9, the LSTM model using the combination of handcrafted morphological and

transfer-learned features provided the highest AUC. A summary of the classification performance
for all tested conditions, including both the pooled and cross-validated results are given in Table 5.
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Fig. 9. Receiving operating characteristic curves (ROC) for classification between healthy
and SCD red blood cells.

Table 4. Confusion matrices for patient-wise cross-validation classification of healthy RBCs and
SCD-RBC

Random Forest Model
Combined Features in an

LSTM network
Combined Features from a

single frame in SVM
Predicted
Healthy

Predicted
SCD

Predicted
Healthy

Predicted
SCD

Predicted
Healthy

Predicted
SCD

Actual Healthy 112 39 125 27 110 42

Actual SCD 43 109 29 122 30 121
Classification
Accuracy 72.93% 81.52% 76.23%

In both the pooled data and the cross-validated data, the proposed LSTM model achieves the
highest values of classification accuracy, AUC, and MCC values.

Table 5. Summary of classification results for healthy and sickle cell disease RBCs

Dataset Method Accuracy AUC MCC

Pooled Data

Random Forest – static features only 93.44% 1.0000 0.8743

Random Forest – motility features only 77.05% 0.8333 0.5559

Random Forest – combined features 98.36% 0.9978 0.9674

LSTM – morphological features only 75.41% 0.8626 0.5435

LSTM – transfer learned features only 95.08% 0.9665 0.9468

LSTM – combined features 98.36% 1.0000 0.9674

Cross Validated Data

Random Forest – static features only 70.96% 0.7989 0.4192

Random Forest – motility features only 66.66% 0.6816 0.3333

Random Forest – combined features 72.94% 0.8358 0.4589

LSTM – morphological features only 65.35% 0.6821 0.3091

LSTM – transfer learned features only 65.68% 0.7640 0.3186

LSTM – combined features 81.52% 0.8645 0.6304
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4. Discussions

The classification results show the proposed method provided the best overall performance for
both identification of different animal red blood cell classes and detection of sickle cell disease in
human RBCs. The improvement of classification performance on two distinct datasets provides
strong evidence that the proposed approach may be beneficial to various biological classification
tasks including potential for diagnosis of various disease states. The results further demonstrate
that the inclusion of spatio-temporal cellular dynamics can be used to improve classification
performance.
For the animal RBC data, the proposed method provides approximately a 3% increase in

classification accuracy. The proposed method was especially beneficial for the human RBC
data, wherein, we achieve a nearly 10% increase in classification accuracy using the proposed
approach in comparison to the previously published random forest classifier on the cross-validated
dataset. Several factors may be responsible for this difference in performance between the two
RBC datasets. Firstly, from the video reconstructions, the sickle cell disease RBC shows very
limited membrane fluctuations, potentially indicative of increased cell rigidity in comparison
to the healthy human RBC (video reconstructions available online). The LSTM network’s
ability to represent this spatio-temporal information may explain why a greater improvement
in performance is achieved for the human RBC dataset. Another possible explanation is that
the transfer learned features are particularly helpful for distinguishing the irregularly shaped
diseased cells. This explanation finds support by the fact that the combination of handcrafted and
transfer-learned features from a single frame using an SVM outperformed the previously used
random forest model incorporating both static and spatio-temporal information (Table 4).

The results of the sickle cell disease dataset also highlight the importance of cross-validation
when dealing with human disease detection (Table 5). When pooling all cells together and not
considering the separation of individual patient data, the same dataset achieves nearly perfect
classification with 98.36% classification accuracy and an AUC of 1 as opposed to the 81.52%
classification accuracy and AUC of 0.8645 attained with patient-wise cross-validation. We
believe that the drop off from pooled data to cross-validated data was more evident in the human
RBC group because of the smaller size of the dataset and the inter-patient variability, leading to a
less homogenous dataset than in the animal RBC data. Classification accuracy on human data
should be expected to improve with larger datasets, even at the patient level as the training data
will become a better representation of the overall population that the testing data is drawn from.
Furthermore, as data driven methods, deep learning approaches tend to increase in accuracy
along with growing data availability whereas conventional machine learning methods reach a
plateau in performance. Therefore, we believe the inclusion of cell motility information, and the
utilization of deep learning as demonstrated here will continue to have an important role in cell
and disease identification tasks.
It is important to also discuss the advantages of the presented system and methodology with

respect to traditional medical diagnostics as well as with respect to other machine-learning based
approaches. Firstly, the presented offers several advantages in terms of cost, field-portability,
and time to results over conventional medical tests. The proposed methodology can provide
classification of a patients’ cells on the order of minutes, whereas a typical electrophoresis assay
takes several hours, and oftentimes the assays are batched to reduce costs which can extend the
time for results to up to a week or more. Furthermore, these traditional systems require dedicated
lab facilities and highly trained personnel. The presented system is field-portable, provides near
rapid results, and does not require extensive training. Lastly, since the system requires only a
small sample of blood, it can easily be used in the field. In combination, these factors make the
presented system an attractive option for potential use as diagnostic system, especially in areas of
limited resources.
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Whereas several machine learning and deep learning approaches have been presented for
classification of biological samples in digital holographic imaging [6,14,23–25,36–38], to the
best of our knowledge, this is the first report of a deep-learning approach based on spatio-temporal
dynamics. Previously presented works considering time-dynamics of living cells focus on cell
monitoring [14,23,24], tracking of cell states over time [25] or use hand-crafted motility-based
features [6] to include temporal information in classification using conventional machine learning
algorithms. On the other hand, previous deep-learning approaches for biological cell classification
[36–38] using convolutional layers do not consider temporal behavior of the cells. The proposed
methodology enables the use of time-varying behavior in a deep learning framework by utilizing
a Bi-LSTM network architecture and shows improved performance over classification using
handcrafted motility-based features in conventional machine learning approaches [6].

5. Conclusions

In conclusion, we have presented a deep learning approach for cell identification and disease
detection based on spatio-temporal cell signals derived from digital holographic microscopy
video recordings. Holographic videos were recorded using a compact, 3D-printed shearing
digital holographic microscope, then individual cells were segmented and reconstructed. Hand-
crafted morphological features and features extracted through transfer learning using a pretrained
convolutional neural network were extracted at each time frame to generate time-varying feature
vectors as inputs to the LSTM model. The proposed approach was demonstrated for cell
identification between two morphologically similar animal red blood cell classes using a clinically
relevant dataset consisting of healthy and sickle cell disease human red blood cells. In each
instance, the cross-validated data had improved performance using the proposed approach over
conventional machine learning methods with substantial improvement noted for sickle cell disease
detection. The proposed approach also outperformed a classifier using data from only a single
timeframe, indicating the benefit of studying time-evolving cellular dynamics. Future work
entails continued study of time-varying biological signals, increased patient pools for clinically
relevant studies, and testing on various disease states. Additional future work may also consider
Zernike coefficients in combination with morphological or transfer learned features using the
proposed spatio-temporal deep learning strategy as well as the use of the proposed methodology
to distinguish between various disease states that may appear morphologically similar [20].
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